
ISRAEL JOURNAL OF MATHEMATICS 162 (2007), 81–92

DOI: 10.1007/s11856-007-0089-4

ON THE NUMBER OF GENERATORS NEEDED FOR FREE

PROFINITE PRODUCTS OF FINITE GROUPS

BY

Miklós Abért∗
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ABSTRACT

We provide lower estimates on the minimal number of generators of the

profinite completion of free products of finite groups.

In particular, we show that if C1, . . . , Cn are finite cyclic groups then

there exists a finite group G which is generated by isomorphic copies of

C1, . . . , Cn and the minimal number of generators of G is n.

1. Introduction

For a group G let d(G) denote the minimal number of generators for G. If G is

a profinite group then we mean topological generation rather than the abstract

one. Let Ĝ denote the profinite completion of G; trivially d(Ĝ) ≤ d(G). The

first finitely generated residually finite examples where the two quantities are
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different were found by Noskov [Nos]. His examples were metabelian and he

also showed that for these groups we have

d(G) ≤ (t2 + 5t + 2)/2 with t = d(Ĝ).

An old question Melnikov [Kou, 6.31] raised was whether d(G) is always bounded

by a function of d(Ĝ) for a residually finite, finitely generated group G. This

has been recently answered negatively by Wise [Wis] but is still open for linear

groups.

Another class of groups where passing to profinite completion may imply a

drop in the minimal number of generators is free products of finite groups. Let

G1, G2, . . . , Gn be finite groups, let s = maxi d(Gi) and let

Γ = G1 ∗ G2 ∗ · · · ∗ Gn

be the free product of the Gi. Then the so-called Grushko–Neumann theorem

(see [Gru] and [Neu]) says that d(Γ) =
∑

i d(Gi). On the other hand, Kovács

and Sim [KoS] showed that if the Gi are solvable and have pairwise coprime

orders then d(Γ̃) ≤ n + s − 1, where Γ̃ denotes the prosolvable completion of

Γ. In the language of finite groups this translates to stating that if G is a finite

solvable group which is generated by subgroups isomorphic to G1, G2, . . . , Gn,

then d(G) ≤ n + s − 1 (see [RiW]).

This was followed by work of Lucchini [Lu1] who, using the Classification of

Finite Simple Groups, showed that there exists an absolute constant c such that

if the Gi have pairwise coprime orders and n > 2 then

d(Γ̂) ≤ (1 + (4c)/3)(n − 1) + 2s + c.

It is conjectured that if the Gi have pairwise coprime orders then in fact

d(Γ̂) = n + s − 1.

The upper bound d(Γ̂) ≤ n + s is proved by Lucchini in [Lu1, Theorem C] in

the case when the Gi are pi-groups for distinct primes pi.

The aim of this paper is to support general lower bounds for d(Γ̂). For some

special families of finite groups this has been done by Kovács and Sim [KoS].

The first estimate of this type works for arbitrary finite groups and trivially

implies d(Γ) ≤ d(Γ̂)2.

Theorem 1: Let G1, G2, . . . , Gn be finite groups and let Γ = G1 ∗G2 ∗ · · ·∗Gn.

Then

d(Γ̂) ≥ n.



Vol. 162, 2007 MINIMAL NUMBER OF GENERATORS 83

In particular, if all the Gi are nontrivial cyclic, then we have the equality

d(Γ̂) = n, proving the above conjecture for the case s = 1. In fact, as Proposi-

tion 9 shows, already d(Γ̃) = n.

Note that the weaker estimate

d(Γ̂) ≥ n −

n∑

i=1

1

|Gi|

can be proved in various ways. In particular, it is immediate from the following

observation, which may be interesting in itself.

Proposition 2: Let Γ be a finitely presented residually finite group. Then

d(Γ̂) ≥ b
(2)
1 (Γ) + 1,

where b
(2)
1 (Γ) denotes the first L2-Betti number of Γ.

Note that by the definition of L2-Betti numbers d(Γ) ≥ b
(2)
1 (Γ)+1 for arbitrary

groups [Luc].

Our second theorem involves s in the lower estimate in the following form.

Theorem 3: Let G1, G2, . . . , Gn be finite groups, let Γ = G1 ∗ G2 ∗ · · · ∗ Gn

and let

s′ = max(d(Gi/G′
i)).

Then

d(Γ̂) ≥ n + s′ − 1.

In particular, if all the Gi are nilpotent then d(Γ̂) ≥ n + s− 1 which sets the

conjectured lower bound. Moreover, if the Gi are pi-groups for distinct primes

pi, then using Lucchini’s upper bound we get

n + s − 1 ≤ d(Γ̂) ≤ n + s.

For groups of pairwise coprime order where the minimal number of generators

is not witnessed by the abelianization, we are unable to set the conjectured lower

bound in general, but in the case s = 2 we can show that it is the best possible

one can hope for.

Theorem 4: For every n there exist solvable groups G1, G2, . . . , Gn of pairwise

coprime order such that d(Gi) = 2, Gi/G′
i is cyclic (1 ≤ i ≤ n) and for Γ =

G1 ∗ G2 ∗ · · · ∗ Gn we have d(Γ̂) ≥ n + 1.
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2. Proofs

First we prove Proposition 2. Note that this is independent of the rest of the

paper and it provides a weaker bound than the one obtained with our main

method. However, it is readily generalized to all classes of groups where we can

compute the first L2 Betti number, e.g., to amalgamated products.

Proof of Proposition 2: Let N1 ⊳ Γ be a normal subgroup of finite index such

that d(Γ̂) = d(Γ/N). Let

Γ = N0 ≥ N1 ≥ N2 ≥ · · ·

be an infinite chain of normal subgroups of Γ of finite index such that
⋂

i Ni = 1.

Let Ki = N ′
iN

2
i , where N ′

i denotes the derived subgroup and N2
i is the normal

subgroup generated by all squares in Ni (i ≥ 0). Let Gi = Γ/Ni and let

Hi = Γ/Ki (i ≥ 0). Let di denote the torsion-free rank of the abelianization

of Ni (or in other words, the first homology of Ni). Using a theorem of Lück

[Luc], we have

b2
1(Γ) = lim

n→∞
dn/|Gn|.

Now Ni/Ki, is an elementary abelian 2-group and

d(Ni/Ki) ≥ di i ≥ 0.

The index of Ni/Ki in Hi is |Gi| and so using the Nielsen–Schreier theorem we

have

d(Ni/Ki) ≤ (d(Hi) − 1)|Gi| + 1 i ≥ 0

which gives us

d(Hi) ≥
d(Ni/Ki) − 1

|Gi|
+ 1 ≥

di − 1

|Gi|
+ 1 i ≥ 0.

Since
⋂

i Ki ≤
⋂

i Ni = 1 and |Gn| → ∞, we have

d(Γ̂) = lim
n→∞

d(Hi) ≥ lim
n→∞

dn − 1

|Gn|
+ 1 = b2

1(Γ) + 1.

The proposition holds.

Now we start building towards Theorem 1 and Theorem 3.

Let Γ be a finitely generated group and H a finite group. Let Hom(Γ, H)

denote the set of homomorphisms from Γ to H . Then Hom(Γ, H) is finite. Let

h(Γ, H) =
log |Hom(Γ, H)|

log |H |
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The number h(Γ, H) will be the key notion of this paper. Let

K(Γ, H) =
⋂

ϕ∈Hom(Γ,H)

kerϕ

and let the quotient group

G(Γ, H) = Γ/K(Γ, H).

Since K(Γ, H) can be obtained as a finite intersection of subgroups of finite

index, G(Γ, H) is a finite image of Γ. Also, each homomorphism from Γ to H

factors through K(Γ, H), so we have

|Hom(Γ, H)| = |Hom(G(Γ, H), H)|

implying

h(G(Γ, H), H) = h(Γ, H).

The following two basic lemmas are needed later.

Lemma 5: Let Γi (1 ≤ i ≤ n) be finitely generated groups and let H be a finite

group. Then

h(Γ1 ∗ Γ2 ∗ · · · ∗ Γn, H) =

n∑

i=1

h(Γi, H)

Proof: By the definition of a free product, for every set of homomorphisms

ϕi ∈ Hom(Γi, H) (1 ≤ i ≤ n) there exists a unique homomorphism ϕ ∈

Hom(Γ1∗Γ2∗· · ·∗Γn, H) such that the restriction of ϕ to Γi equals ϕi (1 ≤ i ≤ n).

Hence

|Hom(Γ1 ∗ Γ2 ∗ · · · ∗ Γn, H)| =

n∏

i=1

|Hom(Γi, H)|

implying

h(Γ1 ∗ Γ2 ∗ · · · ∗ Γn, H) =
log |Hom(Γ1 ∗ Γ2 ∗ · · · ∗ Γn, H)|

log |H |

=

∑n
i=1 log(|Hom(Γi, H)|)

log |H |
=

n∑

i=1

h(Γi, H)

as claimed.
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Lemma 6: Let Γ be a finitely generated group and let H be a finite group.

Then

h(Γ, Hn) = h(Γ, H)

for all natural numbers n.

Proof: A function ϕ: Γ → Hn is a homomorphism if and only if all the co-

ordinate functions of ϕ are homomorphisms into H . Thus |Hom(Γ, Hn)| =

|Hom(Γ, H)|n which implies the statement.

The following lemma establishes a connection between the function h and the

minimal number of generators for the profinite completion.

Lemma 7: Let Gi be finite groups (1 ≤ i ≤ n) and let

Γ = G1 ∗ G2 ∗ · · · ∗ Gn.

Then

d(Γ̂) ≥

n∑

i=1

h(Gi, H)

for any finite group H .

Proof: If G is an arbitrary homomorphic image of Γ then Hom(G, H) ≤

Hom(Γ, H) and so we have h(G, H) ≤ h(Γ, H) as well. In particular, for

d = d(G) we have

h(G, H) ≤ h(Fd, H) =
log |Hom(Fd, H)|

log |H |
=

log(|H |d)

log |H |
= d.

Using this and Lemma 5 we have

d(Γ̂) ≥ d(G(Γ, H)) ≥ h(G(Γ, H), H) = h(Γ, H) =
n∑

i=1

h(Gi, H),

as claimed.

So in order to obtain a lower bound on d(Γ̂) we have to find a target group

H , such that all the Gi have many homomorphisms into H . Note that if we

choose the target group to be a large symmetric group or a large dimensional

general linear group over a fixed finite field, we get the estimate

d(Γ̂) ≥ n −
n∑

i=1

1

|Gi|
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already established by Proposition 2. It turns out that the best target groups

for our purposes will be produced from semisimple Gi-modules over finite fields.

Proof of Theorem 1: Recall that Op(G) denotes the largest normal p-subgroup

of G. Let p be a prime such that

Op(Gi) = 1 1 ≤ i ≤ n

and let F = Fp be the field of order p. Let Mi be a nontrivial simple Gi-module

over F of dimension di = dimF Mi (1 ≤ i ≤ n). Let l be the least common

multiple of the di and let V be a vector space over F of dimension l.

Let 1 ≤ i ≤ n. Since di divides l, V can be turned into a semisimple

Gi-module such that all the simple factors of V under Gi are isomorphic to

Mi. Let Li ⊆ GL(V ) denote the linear action of Gi on V . Since Mi is nontriv-

ial, Li is not the trivial group and since Mi is simple, Li has no nonzero fixed

vector in V .

Let

R = 〈Li | 1 ≤ i ≤ n〉 ⊆ GL(V )

be the linear group generated by the Li. Then V is a simple R-module. Let

r = |R|.

Let m be a natural number and let H be the semidirect product of V m and

R. Then H has order plmr. We want to estimate |Hom(Gi, H)| from below. It

will suffice to consider conjugates of a fixed surjective homomorphism from Gi

to Li. The number of those conjugates equals the size of the conjugacy class of

Li in H . Since Li has no fixed vector in V , the centralizer CH(Li) ≤ R. This

implies

|Hom(Gi, H)| ≥
|H |

|CH(Li)|
≥

|H |

r
= plm

so

h(Gi, H) ≥
log plm

log(plmr)
= 1 −

log r

m log pl + log r
.

Using Lemma 7 gives

d(Γ̂) ≥

n∑

i=1

h(Gi, H) ≥ n
(
1 −

log r

m log pl + log r

)
.

Letting m to be arbitrarily large this leads to

d(Γ̂) ≥ n.

The theorem holds.
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Now we prove Theorem 3 using the construction above.

Proof of Theorem 3: We can assume that d(Gn/G′
n) = s′. Let p be a prime

such that ps′

divides |Gn/G′
n| and let F = Fp be the field of order p. By

permuting the Gi we can also assume that there exists 0 ≤ t < n such that p

does not divide |Gi/G′
i| (1 ≤ i ≤ t) and p divides |Gi/G′

i| (t + 1 ≤ i ≤ n). Let

us define a new list of finite groups Hi (1 ≤ i ≤ t + 1) as follows. For 1 ≤ i ≤ t

let

Hi = Gi/Op(Gi)

and let

Ht+1 = Cs′+n−t−1
p .

From here we follow the construction and notation in the proof of Theorem

1 using the Hi (1 ≤ i ≤ t) and p as prime. This is allowed since Op(Hi) = 1

(1 ≤ i ≤ t). For m large enough, let H be the target group given by the

construction. Then, as before, we have

h(Hi, H) ≥ 1 −
log r

m log pl + log r
1 ≤ i ≤ t.

Now Hom(Ht+1, V
m) ⊆ Hom(Ht+1, H) implying

h(Ht+1, H) =
log |Hom(Ht+1, H)|

log |H |
≥

log |Hom(Ht+1, V
m)|

m log |V | + log |R|

= h(Ht+1, V
m)

m log |V |

m log |V | + log |R|

and |Hom(Ht+1, Cp)| = ps′+n−t−1 implying

h(Ht+1, V
m) = h(Ht+1, Cp) = s′ + n − t − 1

which gives

t+1∑

i=1

h(Hi, H) ≥ (s′ + n − t − 1)
m log |V |

m log |V | + log |R|
+ t

(
1 −

log r

m log pl + log r

)

Setting m to be large enough and using Lemma 7 we get

d( ̂H1 ∗ · · · ∗ Ht+1) ≥

t+1∑

i=1

h(Hi, H) ≥ s′ + n − 1.

On the other hand, Hi is a quotient of Gi (1 ≤ i ≤ t) and Ht+1 is a quotient of

Gt+1 ∗ · · · ∗ Gn which implies that H1 ∗ · · · ∗ Ht+1 is a quotient of Γ, leading to

d(Γ̂) ≥ d( ̂H1 ∗ · · · ∗ Ht+1) ≥ s′ + n − 1.
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The theorem holds.

For a prime p let Aff(p) denote the group of affine transformations of Fp.

Then Aff(p) acts on Fp and so it embeds into the symmetric group Sym(Fp).

Lemma 8: Let H ≤ Aff(p) be a subgroup properly containing the additive

subgroup Fp. Then the centralizer CSym(Fp)(H) = 1.

Proof: Since Fp is abelian and transitive in Sym(Fp), CSym(Fp)(Fp) = Fp,

implying CSym(Fp)(H) ≤ Fp. Let h ∈ H\Fp. Then h acts on Fp as multiplication

by a non-identity element, thus CFp
(h) = {0}, giving CSym(Fp)(H) = 1.

Now we prove Proposition 9. It is again a slight modification of the construc-

tion in Theorem 1.

Proposition 9: Let G1, G2, . . . , Gn be finite cyclic groups and let Γ = G1 ∗

G2 ∗ · · · ∗ Gn. Then

d(Γ̃) = d(Γ̂) = n

where Γ̃ denotes the prosolvable completion of Γ.

Proof: Obviously d(Γ̃) ≤ d(Γ̂) ≤ n holds, so it is enough to show that d(Γ̃) ≥ n.

Just as before, we can assume that the Gi have prime order pi (1 ≤ i ≤ n).

Let k be the product of the distinct primes in the sequence p1, p2, . . . , pn and

let p be a prime in the arithmetic progression kn + 1 (n ∈ N) to be chosen

later. Then the cyclic group Ck embeds into the multiplicative group F∗
p. Let

the target group be H = FpCk ≤ Aff(p). Since the target group is metabelian,

the witness group

G(Γ, H) = Γ/K(Γ, H) = Γ/
⋂

ϕ∈Hom(Γ,H)

kerϕ →֒ H |Hom(Γ,H)|

embeds into the product of metabelian groups thus it is metabelian itself. Using

Lemma 8 and Lemma 7 for a large enough p we get d(G(Γ, H)) ≥ n, finishing

the proof.

Now we prove Theorem 4. The background result needed is due to Erdős

[Erd] and is purely number-theoretic.

Theorem 10 (Erdős): Let A be an infinite set of positive integers and let

fn(A) = |A ∩ {1, . . . , n}|.

Assume that
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1) fn(A) increases faster than n(
√

5−1)/2;

2) Every arithmetic progression contains at least one integer which is the

sum of distinct elements of A.

Then every sufficiently large integer is a sum of distinct elements of A.

We are ready to prove Theorem 4.

Proof of Theorem 4: Let p1, p2, . . . , pn be the first n odd primes and let D =

p1p2 · · · pn. For 1 ≤ i ≤ n let mi ∈ {1, . . . , D} be the (unique) solution of the

congruence system

mi ≡

{
1(mod pj) if i = j
2(mod pj) if i 6= j

1 ≤ j ≤ n

and let Si be the set of primes in the arithmetic progression

{Dx + mi: x ∈ N}.

Then the Si (1 ≤ i ≤ n) are pairwise disjoint.

We claim that Si satisfies both assumptions in Theorem 10 (1 ≤ i ≤ n).

The first assumption follows from the asymptotic form of Dirichlet’s theorem

saying fn(Si) = O(n/ log n). For the second assumption let a and r be positive

integers; we shall check that the assumption holds for the arithmetic progression

{ax + r: x ∈ N}. Let p
oj

j be the maximal pj-power dividing a (1 ≤ j ≤ n), let

b =

n∏

j=1

p
oj

j

and let a′ = a/b and let D′ be the least common multiple of b and D. Then

a′ and D′ are relatively prime, so there exists a solution m′
i to the congruence

system
m′

i ≡ mi(mod D′)

m′
i ≡ 1(moda′)

Since m′
i and D′a′ are relatively prime, using Dirichlet’s theorem, the set

S′
i = {x ∈ Si: x ≡ m′

i(mod D′a′)}

consists of infinitely many primes. Also there exists t with m′
it ≡ r (mod D′a′).

Let s1, s2, . . . , st be distinct elements of S′
i ⊆ Si. Then since a divides D′a′, we

have
t∑

j=1

sj ≡ m′
it ≡ r(mod a)
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provides the required sum in the second assumption. The claim holds.

Now Theorem 10 implies that there exists a natural number k that can be

obtained as a sum of different elements of the Si (1 ≤ i ≤ n). Let qi,j ∈ Si

(1 ≤ i ≤ n, 1 ≤ j ≤ li) be different primes satisfying the decompositions

k =

li∑

j=1

qi,j .

Let Ci denote the cyclic group of order pi. Let Fi,j = Fqi,j
, let

Vi =

li⊕

j=1

Fi,j and Xi =

li⋃

j=1

Fi,j

Then pi divides qi,j − 1, so Ci embeds into the multiplicative group of Fi,j . Let

Gi be the semidirect product of Vi and Ci acting diagonally on the components

Fi,j . This action defines an embedding of Gi into Sym(Xi). Let Gi,j denote

the action of Gi on Fi,j . Then Gi,j is permutation isomorphic to a subgroup

of Aff(qi,j) properly containing Fi,j and for j 6= j′ the permutation groups Gi,j

and Gi,j′ are not permutation isomorphic. Applying Lemma 8, the centralizer

CSym(Xi)(Gi) =

li⊕

j=1

CSym(Fi,j)(Gi,j) = 1

is trivial. We showed that the Gi (1 ≤ i ≤ n) have a permutation action on k

points with trivial centralizer in the full symmetric group Sym(k).

It is easy to see that G′
i = Vi and so Gi/G′

i is cyclic. Trivially, Gi is solvable

and non-cyclic, so d(Gi) = 2. Also

|Gi| = pi

li∏

j=1

qi,j

so for i 6= i′ the orders of Gi and Gi′ are relatively prime.

We estimate d(Γ̂) using Lemma 7 with Sym(k) as target group. We have seen

that the Gi (1 ≤ i ≤ n) have an embedding into Sym(k) with trivial centralizer.

Taking into account the trivial permutation representation, this gives

|Hom(Gi, Sym(k))| ≥ | Sym(k)| + 1,

which yields

d(Γ̂) ≥
n∑

i=1

h(Gi, Sym(k)) ≥ n
log(k! + 1)

log k!
> n.
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The theorem holds.

Remark: The upper estimate d(Γ̂) ≤ n + s − 1 does not hold in general, even

if we assume that all the Gi are perfect. Indeed, let the Gi (1 ≤ i ≤ n) be

isomorphic to A5, the alternating group on 5 letters. Now Hom(A5, A5) consists

of the set of automorphisms and the trivial homomorphism, so

h(A5, A5) =
log 121

log 60
≈ 1.1713

implying

d(Γ̂) ≥ 1.1713n.
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